
6 Digital Modulation

6.1 Introduction to Digital Modulation

6.1. We once again return to Figure 1 which is repeated here as Figure 20.
In this chapter, digital modulator-demodulator boxes are the main focus.
The digital modulator serves as the interface to the physical (analog)
communication channel.Elements of digital commu. sys.
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Figure 20: Basic elements of a digital communication system

The mapping between the digital sequence (which we may assume to be
a binary sequence) and the (continuous-time) signal sequence to be trans-
mitted over the channel can be either memoryless or with memory, resulting
in memoryless modulation schemes and modulation schemes with memory.

Definition 6.2. In a memoryless modulation scheme, each particular
digital modulation has a signal set which is simply a collection of M signals
(or waveforms): {s1(t), s2(t), . . . , sM(t)}. The binary sequence (from the
channel encoder) is parsed into blocks each of length b, and each block is
mapped into one of the signals in the collection regardless of the previously
transmitted signals.

• M = 2b.

• This mapping from M possible messages to M (distinct) signals is
called M-ary modulation.
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Figure 21: Digital Modulator and the mapping from binary blocks to waveforms.

• 2-ary = binary; 3-ary = ternary; 4-ary = quarternary.

• In binary modulation, each bit from the channel encoder is trans-
mitted separately. The digital modulator simply map the binary digit
0 into a waveform s1(t) and the binary digit 1 into a waveform s2(t).

• The waveforms sm(t) can be, in general, of any shape. However, usually
these waveforms are bandpass signals which may differ in amplitude or
phase or frequency, or some combination of two or more signal param-
eters.

Definition 6.3. In a modulation scheme with memory, the mapping is from the set of the current
b bits and the past (L− 1)b bits to the set of possible M = 2b messages.

• Modulation systems with memory are effectively represented by Markov chains.

• The transmitted signal depends on the current b bits as well as the most recent L−1 blocks
of b bits.

• This defines a finite-state machine with 2(L−l)b states.

• The mapping that defines the modulation scheme can be viewed as a mapping from the
current state and the current input of the modulator to the set of output signals resulting
in a new state of the modulator.

• Parameter L is called the constraint length of modulation.

• The case of L = 1 corresponds to a memoryless modulation scheme.
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Definition 6.4. We assume that these signals are transmitted at every Ts
seconds.

• Ts is called the signaling interval.

• This means that in each second

Rs =
1

Ts

symbols are transmitted.
Parameter Rs is called the signaling rate, symbol (transmission)
rate, or baud rate.

• Bit rate R =

Definition 6.5. The energy content of a signal sm(t) is denoted by Em. It
can be calculated from

Em =

∫ ∞
−∞
|sm(t)|2dt.

6.6. The average signal energy (per symbol) for the M -ary modulation
in Definition 6.2 is given by

Es =
M∑
m=1

pmEm

where pm indicates the probability of the mth signal (message probability).

• (Average) energy per bit: Eb =

• For equiprobable signals,

• If all signals have the same energy, then

◦ Em ≡ E for some E and

◦ Es = E.
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Definition 6.7. In (the digital version of) Pulse Amplitude Modulation
(PAM), the signal waveforms are of the form

sm(t) = Amp(t), 1 ≤ m ≤M (33)

where p(t) is a (common) pulse and A = {Am, 1 ≤ m ≤M} denotes the set
of M possible “amplitudes”.

• For M = 2, we may have A = {±1}
For M = 4, we may have A = {±1,±3}
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• When M = 2 (binary modulation) and s1(t) = −s2(t), such signals
are called antipodal. This case is sometimes called binary antipodal
signaling.

• More generally, the signal “amplitudes” Am may take the discrete val-
ues

Am = 2m− 1−M, m = 1, 2, . . . ,M (34)

i.e., the “amplitudes” are ±1,±3,±5, . . . ,±(M − 1).

• These M waveforms can be visualized as M points on an axis as shown
below. Note how the axis is scaled by the common pulse p(t).
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• The shape of p(t) influences the spectrum of the transmitted signal.

• The energy in signal sm(t) is given by

• For equiprobable signals,

When A = {±1},

When A = {±1,±3},

For the general A defined in (34),

Definition 6.8. In Amplitude-Shift Keying (ASK), the (common) pulse
p(t) in (33) for PAM is replaced by

p(t) = g(t) cos(2πfct).

where fc is the carrier frequency.

• Note that Ep =
Eg
2 .

6.9. The mapping or assignment of b (encoded) bits to the M = 2b possible
signals may be done in a number of ways. The preferred assignment is one
in which the adjacent signal amplitudes differ by one binary digit. This
mapping is called Gray coding.

• It is important in the demodulation of the signal because the most likely
errors caused by (additive white gaussian) noise involve the erroneous
selection of an adjacent amplitude to the transmitted signal amplitude.
In such a case, only a single bit error occurs in the b-bit sequence.

• Gray code list for n bits can be generated recursively from the list for
n− 1 bits by

79



i reflecting the list (i.e. listing the entries in reverse order),

ii concatenating the original list with the reversed list,

iii prefixing the entries in the original list with a binary 0, and then
prefixing the entries in the reflected list with a binary 1.
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Figure 22: Gray coding and its reflect-and-prefix construction for PAM signaling

6.10. In PAM (and ASK), we use just one pulse (sinusoidal pulse in the case
of ASK) and modify the amplitude of the pulse to create many waveforms
s1(t), s2(t), . . . sM(t) that we can use to transmit different block of bits. Next,
we would like to study the case where multiple shapes are used.

Example 6.11. For (baseband) binary (digital) modulation, we may use
the two waveforms s1(t) and s2(t) shown in Figure 23.
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Graphically, the orthonormal basis functions φ1(t) and φ2(t) look as in Figure 5.5(b) and
the signal space is plotted in Figure 5.6. The distance between the two signals can be easily
computed as follows:

d21 =
√

E + E = √2E = √2
√

E. (5.35)

�

In comparing Examples 5.1 and 5.2 we observe that the energy per bit at the transmitter
or sending end is the same in each example. The signals in Example 5.2, however, are closer
together and therefore at the receiving end, in the presence of noise, we would expect more
difficulty in distinguishing which signal was sent. We shall see presently that this is the
case and quantitatively express this increased difficulty.

Example 5.3 This is a generalization of Examples 5.1 and 5.2. It is included princi-
pally to illustrate the geometrical representation of two signals. The signal set is shown

Figure 23: Signal set for
Example 6.11.
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6.12. It is difficult to visualize, find relationship between, work with, or
perform analysis directly on waveforms. For example, when we have many
waveforms in the signal set, it is difficult to tell (by looking at their plots)
how easy it is for them to get corrupted by the noise process; that is, how
easy it is for one waveform to be interpreted as being another waveform at
the demodulator.

In the next sections, we will study how to represent waveforms in the
signal set as “equivalent” vectors (or points) in a signal space similar to
what we saw in Figure 22. Representing waveforms as points allows us to
look at them as a collection effectively.

Example 6.13. Consider a signal set containing four waveforms in Figure
24a. Note that a waveform contains infinitely many points. To represent all
possible waveforms, we would need to work in infinite-dimensional space.
However, we only have to consider four possible waveforms here. It turns
out that we can represent these four waveforms by four vectors in a three-
dimensional space as shown in Figure 24b. We will learn how to do this in
the remaining parts of this chapter.
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Figure 24: From Waveforms to Constellation

6.14. A signal space is a vector space. So, we will first provide a review of
some concepts related to vector spaces.
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